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Abstract

We are concerned with central differencing schemes for solving scalar hyperbolic con-
servation laws. We compare the Kurganov-Tadmor (KT) two-dimensional (Kurganov
and Tadmor, 2000) second order semi-discrete central scheme in dimension by dimension
formulation with a new two-dimensional approach introduced here and applied in numer-
ical simulations for two-phase, two-dimensional flows in heterogeneous formations. This
semi-discrete central scheme is based on the ideas of Rusanov’s method (Rusanov (1961))
using a more precise information about the local speeds of wave propagation computed at
each Riemann Problem in two-space dimensions. We find the KT dimension by dimen-
sion has a much simpler mathematical description than the genuinely two-dimensional
one with a little more numerical diffusion, particularly in the presence of viscous fingers.
Unfortunately, as one can see in Abreu et al. (2007), the KT with the dimension by di-
mension approach might produce incorrect boundary behavior in a typical geometry used
in the study of porous media flows: the quarter of a five spot. This problem has been
corrected by the authors with the new semi-discrete scheme proposed here. We conclude
with numerical examples of two-dimensional, two-phase flow associated with two distinct
flooding problems: a two-dimensional flow in a rectangular heterogeneous reservoir (called
slab geometry) and a two-dimensional flow in a 5-spot geometry homogeneous reservoir.

1. INTRODUCTION

We consider a model for two-phase flow, immiscible and incompressible displacement in
heterogeneous porous media. The highly nonlinear governing equations are of very prac-
tical importance in petroleum engineering (Peaceman, 1977; Chavent and Jaffré, 1986)
(see also (Furtado and Pereira, 2003) and the references therein for recent studies for the
scale-up problem for such equations).

The conventional theoretical description of two-phase flow in a porous medium, in the
limit of vanishing capillary pressure, is via Darcy’s law coupled to the Buckley-Leverett
equation. The two phases will be referred to as water and oil, and indicated by the
subscripts w and o, respectively. We also assume that the two fluid phases saturate the
pores. With no sources or sinks, and neglecting the effects of gravity these equations are
(see Peaceman (Peaceman, 1977)):

∇ · v = 0, v = −λ(s)K(x)∇p, (1)
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∂s

∂t
+∇ · (f(s)v) = 0. (2)

Here, v is the total seepage velocity, s is the water saturation, K(x) is the absolute
permeability, and p is the pressure. The constant porosity has been scaled out by a
change of the time variable. The constitutive functions λ(s) and f(s) represent the total
mobility and the fractional flow of water, respectively.

We are concerned with numerical schemes for solving scalar hyperbolic conservation
laws arising in the simulation of multiphase flows in multidimensional heterogeneous
porous media. These schemes are non-oscillatory and enjoy the main advantage of
Godunov-type central schemes: simplicity, i.e., they employ neither characteristic de-
composition nor approximate Riemann solvers. This makes them universal methods that
can be applied to a wide variety of physical problems, including hyperbolic systems of
conservation laws. The two main classes of Godunov methods are upwind and central
schemes.

The Lax-Friedrichs (LxF) scheme (Lax, 1954) is the canonical first order central scheme,
which is the forerunner of all central differencing schemes. It is a non-oscillatory scheme
based on piecewise constant approximate solution and it also enjoys simplicity. Unfortu-
nately the excessive numerical dissipation in the LxF recipe (of order O(∆X2/∆t)) yields
a poor resolution, which seems to have delayed the development of high resolution cen-
tral schemes when compared with the earlier developments of the high resolution upwind
methods. Only in 1990 a second order generalization to the LxF scheme was introduced
in (Nessyahu and Tadmor, 1990). They used a staggered form of the LxF scheme and re-
placed the first order piecewise constant solution with a van Leer’s MUSCL-type piecewise
linear second order approximation (Van Leer, 1979). The numerical dissipation present
in this new central scheme has an amplitude of order O(∆X4/∆t). (see (Abreu et al.,
2004c), (Abreu et al., 2004b), (Abreu et al., 2004a), (Abreu et al., 2006), for recent studies
in three phase flows using the Nessyahu and Tadmor (NT) central scheme). In spite of
the good resolution obtained by the Nessyahu and Tadmor scheme, much higher than in
the first order LxF scheme, there are still some difficulties with small time steps which
arise, e.g. in multiphase flows in highly heterogeneous petroleum reservoirs or aquifers.
To overcome this difficulty, we can use a semi-discrete formulation coupled with an appro-
priate ODE solver retaining simplicity and high resolution with lower numerical viscosity,
proportional to the vanishing size of the time step ∆t. Both LxF and NT schemes do not
admit a semi-discrete form; see (Kurganov and Tadmor, 2000) for a detailed description of
the one-dimensional Kurganov and Tadmor central scheme which is the first fully discrete
Godunov-Type central scheme admitting a semi-discrete form.

We compare the Kurganov-Tadmor (KT) two-dimensional (Kurganov and Tadmor,
2000) second order semi-discrete central scheme in dimension by dimension formulation
with a genuinely two-dimensional approach applied in numerical simulations for two-
phase, two-dimensional flows in heterogeneous formations. We find the KT dimension
by dimension has a much simpler mathematical description than the genuinely two-
dimensional one adding only a little more diffusion, particularly in the presence of viscous
fingers. Unfortunately, the KT with the dimension by dimension approach might produce
incorrect boundary behavior in a typical geometry used in the study of porous media flows:



SD2-2D 3

the quarter of a five spot. These results are presented in (Abreu et al., 2007). This prob-
lem motivated the authors to develop a genuinely two-dimensional formulation which is
then presented in section (2.2). Although a similar two-dimensional formulation was avail-
able in a early work (Kurganov and Petrova, 2001), ours was developed independently to
deal with two-phase flows, immiscible and incompressible displacement in heterogeneous
porous media. It shares the same general ideas with the work of Kurganov-Petrovna but
differs in many technical details.

This paper is organized as follows. In Section 2 we introduce the model for two-
phase flows, immiscible and incompressible displacement in heterogeneous porous media.
In Section 2.2 we discuss the mathematical formulation for the KT central scheme in
dimension by dimension approach and in a genuinely two-dimensional one. In Section 3
we will present some numerical results when we apply the KT central differencing scheme
with both approaches mentioned above to porous media flows.

2. NUMERICAL APPROXIMATION OF TWO-PHASE FLOW

2.1. Operator splitting for two-phase flow. An operator splitting technique is em-
ployed for the computational solution of the saturation equation (2) and the pressure
equation (1) which are solved sequentially with distinct time steps. This method has
proved to be computationally efficient in producing accurate numerical solutions for two-
phase flow (Douglas et al., 1997).

Typically, for computational efficiency, larger time steps are used to compute the pres-
sure (1). The splitting allows time steps used in the solution of the pressure-velocity
equation that are longer than those allowed in the convection calculation (2). Thus, we
introduce two time steps: ∆tc used to compute the solution of the hyperbolic problem,
and ∆tp used in the pressure-velocity calculation such that ∆tp ≥ ∆tc. We remark that
in practice, variable time steps are always useful, especially for the convection micro-steps
subject dynamically to a CFL condition.

For the global pressure solution (the pertinent elliptic equation), we use a (locally con-
servative) hybridized mixed finite element discretization equivalent to cell-centered finite
differences (Douglas et al., 1997), which effectively treats the rapidly changing permeabili-
ties that arise from stochastic geology and produces accurate velocity fields. The pressure
and the Darcy velocity are approximated at times tm = m∆tp, m = 0, 1, 2, . . . . The alge-
braic system resulting from the discretized equations can be solved by a preconditioned
conjugate gradient procedure (PCG) or by a multi-grid procedure ((Douglas et al., 1997)).

We use high resolution numerical central scheme (see (Kurganov and Tadmor, 2000))
for solving the scalar hyperbolic conservation laws arising in the convection of the fluid
phases in heterogeneous porous media for two-phase flows - we will discuss the application
of these schemes for two-phase flows in Section 3. Theses methods can accurately resolve
sharp fronts in the fluid saturations without introducing spurious oscillations or excessive
numerical diffusion.

The saturation equation is approximated at times tκm = tm + κ∆tc for tm < tκm ≤ tm+1

that take into account the advective transport of water. We will write tκ to indicate the
time step tκm and tκ+1 to indicate tκm + ∆tc.

A detailed description of the numerical method that we employ for the solution of Eqs.
(1)-(2) can be found in Douglas et al. (1997) and references therein (see also Abreu et al.
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(2006, 2004c) and Abreu et al. (2008) for applications of the operator splitting technique
for three phase flows that takes into account capillary pressure (diffusive effects)).

Remark: To simplify notation, we denote:

• NT1d for one-dimensional NT scheme;
• NT2d for two-dimensional NT scheme;
• KT1d for one-dimensional KT scheme;
• KTdxd for the KT scheme with dimension by dimension approach and
• SD2-2D for our two-dimensional approach.

2.2. TWO SPATIAL DIMENSIONS SECOND ORDER SEMI-DISCRETE CEN-
TRAL SCHEME. In this section, we will develop a two-spatial dimension second order
semi-discrete central scheme (SD2-2D) based on the ideas of Lax (1954); Rusanov (1961);
Nessyahu and Tadmor (1990); Kurganov and Tadmor (2000) and Jiang and Tadmor (1998)
which are then applied in numerical approximation of the scalar hyperbolic conservation
law modeling the convective transport of the fluid phases in two-phase flows and its cou-
pling with lowest order Raviart-Thomas (Raviart and Thomas, 1977) locally conservative
mixed finite elements for the associated elliptic (velocity-pressure part) problem (See
Raviart and Thomas (1977)). We summarize below the basic ideas of the construction of
SD2−2D numerical scheme:

• The Lax-Friedrichs method in two-spatial dimensions LxF2D written in the REA

algorithm setup (See Jiang and Tadmor (1998)) will be used to obtain the two
dimensional Rusanov’s method SD1-2D. We follow the same procedures presented
in Kurganov and Tadmor (2000) in one spatial dimension.
• The new SD2-2D numerical scheme will then be obtained as a second order gen-

eralization of the SD1-2D. This second order precision is achieved approximating
the solution with piecewise linear functions.

2.3. The staggered non-uniform grid of the SD2-2D central scheme. We begin
then extending the LxF2D to obtain the SD1-2D following the same procedures for one
dimensional problems. First, we define the non-staggered and the staggered grids of
retangular cells used in the LxF2D. The points (xj, yk, t

κ) are defined as follows.

xj = j ·∆x, j = . . . ,−1, 0, 1, . . .

yk = k ·∆y, k = . . . ,−1, 0, 1, . . .

tκ = tm + κ ·∆tc, κ = 0, . . . , i,

We denote the cells of the non-staggered grid by Ij,k := (xj−1/2, xj+1/2)× (yk−1/2, yk+1/2).
Its area Aj,k ≡ ∆x·∆y = (xj+1/2−xj−1/2)·(yk+1/2−yk−1/2). The time step of the convective
equation (2) is ∆tc = tκ+1 − tκ. The staggered grid is obtained moving the cells ∆x/2
to the right and ∆y/2 upward These staggered cells will be denoted by Ij+1/2,k+1/2 :=
(xj, xj+1) × (yk, yk+1). Its center is the point (xj+1/2, yk+1/2), where xj+1/2 = xj + ∆x/2
and yk+1/2 = yj + ∆y/2. The Figure 1 illustrates the non-staggered and the staggered
grids showing the cells Ij,k e Ij+3/2,k+1/2 as examples of non-staggered and staggered cells,
respectively.
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Figure 1. The LxF2D uniform grid. The cells Ij,k of the original non-
staggered grid are limited by the solid lines and the cells Ij+3/2,k+1/2 of the
staggered grid are limited by the dashed lines.

The scalar hyperbolic conservation law (2) can be written as

∂s

∂t
+

∂

∂x
(xvf(s)) +

∂

∂y
(yvf(s)) = 0, (3)

where xv ≡ xv(x, y, t) and yv ≡ yv(x, y, t) denote the x and y components of the velocity
field v. The cell averages at time tκ are

S
κ

j,k := Sj,k(t
κ) ≡ 1

∆X∆Y

∫ x
j+1

2

x
j− 1

2

∫ y
k+1

2

y
k− 1

2

s(x, y, tκ) dxdy. (4)

The solution s(x, y, tκ) of the problem (2) at time tκ is approximated using piecewise-
linear MUSCL-type interpolants (See Van Leer (1979)).

S̃κj,k(x, y) = S
κ

j,k + (Sx)
κ
j,k · (x− xj) + (Sy)

κ
j,k · (y − yk), (5)

where xj−1/2 ≤ x ≤ xj+1/2 e yk−1/2 ≤ y ≤ yk+1/2. The second-order resolution is guaran-
teed if the so-called vector of numerical derivative (Sx)

κ
j,k and (Sy)

κ
j,k satisfy

(Sx)
κ
j,k =

∂s

∂x

∣∣∣∣
x=xj ,y=yk,t=tκ

+O(∆X); (6a)

(Sy)
κ
j,k =

∂s

∂y

∣∣∣∣
x=xj ,y=yk,t=tκ

+O(∆Y ), (6b)
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These numerical derivatives are computed using the MinMod limiter

(Sx)
κ
j,k = MMθ

1

∆x

{
S
κ

j−1,k, S
κ

j,k, S
κ

j+1,k

}
:= MM

(
θ

∆Sκj+1/2,k

∆x
,
∆Sκj−1/2,k −∆Sκj+1/2,k

2∆x
, θ

∆Sκj−1/2,k

∆x

)
; (7a)

(Sy)
κ
j,k = MMθ

1

∆y

{
S
κ

j,k−1, S
κ

j,k, S
κ

j,k+1

}
:= MM

(
θ

∆Sκj,k+1/2

∆y
,
∆Sκj,k−1/2 −∆Sκj,k+1/2

2∆y
, θ

∆Sκj,k−1/2

∆y

)
. (7b)

Here ∆ denotes the centered difference, ∆Sκj+1/2,k = S
κ

j+1,k − S
κ

j,k and the paramter θ ∈
[1, 1.8] has been chosen in the optimal way in every numerical example with θ = 1.8
beeing the less dissipative limiter. The minmod limiter (7) guarantees the nonoscillatory
property and the second-order accuracy. The reconstruction given by Equations (5)-(7)
also retains conversation, i.e., ∫

Ij,k

S̃κj,k(x, y) dx dy = S
κ

j,k. (8)

Remark: We notice that if (Sx)
κ
j,k and (Sy)

κ
j,k are equal to zero, then we will get the

first-order two-dimensional semi-discrete scheme SD1-2D. Otherwise, we will obtain the
second-order two spatial dimensions semi-discrete central scheme SD2-2D.

We consider the model of hyperbolic conservation laws given by Equation (2) with cell
averages as in (4) and the two-dimensional piecewise linear reconstruction defined in (5)
and (6) with the conservative property (8). Our goal is to compute an approximated
solution Sj,k(t

κ
m + ∆tc) in the original grid at the next time step. To this end, we apply

the Godunov’s algorithm REA. To solve this problem, we integrate the conservation law
over some control volumes that we need to specify.

Constructing the staggered nonuniform grid: Kurganov and Tadmor developed
the KT1D scheme along the lines of NT1D (See (Kurganov and Tadmor, 2000)). The
nonuniform staggered grid in the KT1D was constructed directly from the staggered
uniform grid of NT1D with additional information on the local speeds of wave propagation.
In a similar way the nonuniform staggered grid in the SD2-2D scheme is defined from
the uniform staggered grid of the NT2D scheme as follows.

(1) We set Cj,k = [xj−1/2, xj+1/2] × [yk−1/2, yk+1/2] to denote the cells of the original
non-staggered grid; Cj+1/2,k+1/2 = [xj, xj+1]× [yk, yk+1] to denote the cells of the uniform
staggered grid. We start with a piecewise constant approximated solution S̄κj,k over the
original cells Cj,k.

(2) Next, we move to the staggered uniform grid with cells given by Cj+1/2,k+1/2.
(3) The NT2D scheme computes four averaged solutions at time step tκm + ∆tc (See

the hachured regions in Figure 2 corresponding to the cells Cj−1/2,k−1/2, Cj+1/2,k−1/2,
Cj−1/2,k+1/2 and Cj+1/2,k+1/2 on the staggered grid). These averaged staggered solution
are then properly projected back onto the original non-staggered grid to obtain the desired
solution (See Jiang and Tadmor (1998)).
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Repeating the same ideias presented by Rusanov in his modification of Lax-Friedrichs’
method, we compute the local speed of propragation at each Riemann Problem. These
local speeds define new non-uniform cells where the evolution step will take place.

Computing the local speed of propagation: we begin with the cell Cj−1/2,k−1/2

to find the local speeds at the following Riemann Problems:

(1) Y direction:
(a) {

S
κ

j−1,k−1, xj−3/2 ≤ x ≤ xj−1/2, yk−3/2 ≤ y ≤ yk−1/2

S
κ

j−1,k, xj−3/2 ≤ x ≤ xj−1/2, yk−1/2 ≤ y ≤ yk+1/2.

The local speed ayj−1,k−1/2 defines the following points:

p1 = (xj−1, yk−1/2 − ayj−1,k−1/2∆tc),

p2 = (xj−1, yk−1/2 + ayj−1,k−1/2∆tc)

sketched in Figure 2. We denote the distance between them by ∆yj−1,k−1/2 :=
2ayj−1,k−1/2∆tc.

(b) {
S
κ

j,k−1, xj−1/2 ≤ x ≤ xj+1/2, yk−3/2 ≤ y ≤ yk−1/2

S
κ

j,k, xj−1/2 ≤ x ≤ xj+1/2, yk−1/2 ≤ y ≤ yk+1/2.

The local speed ayj,k−1/2 defines the points

p3 = (xj, yk−1/2 − ayj,k−1/2∆tc),

p4 = (xj, yk−1/2 + ayj,k−1/2∆tc)

shown in Figure 2 and the distance between them is ∆yj,k−1/2 = 2ayj,k−1/2∆tc.

(2) X direction:
(a) {

S
κ

j−1,k−1, xj−3/2 ≤ x ≤ xj−1/2, yk−3/2 ≤ y ≤ yk−1/2

S
κ

j,k−1, xj−1/2 ≤ x ≤ xj+1/2, yk−3/2 ≤ y ≤ yk−1/2.

The local speed axj−1/2,k−1 defines the points

p5 = (xj−1/2 − axj−1/2,k−1∆tc, yk−1),

p6 = (xj−1/2 + axj−1/2,k−1∆tc, yk−1)

also shown in 2 and ∆xj−1/2,k−1 = 2axj−1/2,k−1∆tc is the distance between
them.

(b) {
S
κ

j−1,k, xj−3/2 ≤ x ≤ xj−1/2, yk−1/2 ≤ y ≤ yk+1/2

S
κ

j,k, xj−1/2 ≤ x ≤ xj+1/2, yk−1/2 ≤ y ≤ yk+1/2.

The local speed axj−1/2,k defines the points

p7 = (xj−1/2 − axj−1/2,k∆tc, yk),

p8 = (xj−1/2 + axj−1/2,k∆tc, yk)
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shown in Figure 2 and ∆Xj−1/2,k = 2axj−1/2,k∆tc denotes the distance between
them.

Given these four local speed of wave propagation ayj−1,k−1/2, ayj,k−1/2, axj−1/2,k−1 e axj−1/2,k,

we can define the Region I (also represented by Rj−1/2,k−1/2) as follows:

B Region I:

Rj−1/2,k−1/2 := [xj−1/2 − bxj−1/2,k−1/2∆tc, xj−1/2 + bxj−1/2,k−1/2∆tc]×
[yk−1/2 − byj−1/2,k−1/2∆tc, yk−1/2 + byj−1/2,k−1/2∆tc]

where bxj−1/2,k−1/2 := max{axj−1/2,k, a
x
j−1/2,k−1} e

byj−1/2,k−1/2 := max{ayj,k−1/2, a
y
j−1,k−1/2}.

Figure 3 shows the new cell Rj−1/2,k−1/2 of the new staggered non-uniform grid.

j−1/2 x j+1/2x j−1 x j x j+1

y k+1/2

y k

y k+1

y
k−1

y k−1/2

p
1

p
2

p
3

p
4

p
5

p
6

p
7

p
8

x

Figure 2. SD2-2D: the construction of the two-dimensional grid

We repeat the same procedures with the cell Cj−1/2,k+1/2 to define the Region III in
terms of the local speed of propagation ayj−1,k+1/2, ayj,k+1/2, axj−1/2,k+1 e axj−1/2,k. These

local speeds determine analogously the points q1 a q8 sketched in Figure 3 and define the
new Region III:
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B Region III:

Rj−1/2,k+1/2 := [xj−1/2 − bxj−1/2,k+1/2∆tc, xj−1/2 + bxj−1/2,k+1/2∆tc]×
[yk+1/2 − byj−1/2,k+1/2∆tc, yk+1/2 + byj−1/2,k+1/2∆tc]

where bxj−1/2,k+1/2 := max{axj−1/2,k, a
x
j−1/2,k+1} and

byj−1/2,k+1/2 := max{ayj,k+1/2, a
y
j−1,k+1/2}.

III

j−1/2 x j+1/2x j−1 x j x j+1

y k+1/2

y k

y k+1

y
k−1

y k−1/2

p
1

p
2

p
5

p
6

q
3

q
4

q
2

q
1

q
7

p
7 p

8

p
4

p
3

q
8

I

x

Figure 3. Regions I and III

Following these same procedures with the staggered cells Cj+1/2,k−1/2 and Cj+1/2,k+1/2 we
define Regions VII and IX shown in Figure 2.3. We will denote by Group A the set of
Regions I, III, VII and IX. Finally, to finish the construction of the new non-uniform
staggered grid, we need to define:

• Four cells which lie in the empty spaces between the regions of Group A. This new
set will be denoted by Group B.
• A central region where the solution is smooth.

The definitions of the cells of Group B will determine the central region. This central
region will not be a rectangle, but a set of retangles. There are many ways to define the
cells of Group B. Our definition will be as follows (See Figura 5):

B Region II:

Rj−1/2,k := [xj−1/2 − cxj−1/2,k∆tc, xj−1/2 + cxj−1/2,k∆tc]×
[yk−1/2 + byj−1/2,k−1/2∆tc, yk+1/2 − byj−1/2,k+1/2∆tc]

where cxj−1/2,k := max{bxj−1/2,k−1/2, b
x
j−1/2,k+1/2}
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III

j−1/2 x j+1/2x j−1 x j x j+1

y k+1/2

y k

y k+1

y
k−1

y k−1/2

I VII

IX

x

Figure 4. Regions I, III, VII and IX

The Regions VI and VIII can be obtained analogously As soon as the cells of Group A
and B are determined, the central region is automatically defined:

B Region V:

Rj,k := [xj−1/2 + cxj−1/2,k∆tc, xj+1/2 − cxj+1/2,k∆tc]×
[yk−1/2 + dyj,k−1/2∆tc, yk+1/2 − dyj,k+1/2∆tc].

We also would like to emphasize that our choice for these regions does not introduce
more numerical diffusion. We will call BR the black rectangle that can be seen in Figure
5 and we notice that, by construction, its area is proportional to (∆tc)

2.

2.4. The new SD2-2D central scheme using Algorithm REA. After defining the
new control volumes performed in the section above, we are now able to develop our new
SD2-2D central scheme following the REA algorithm.

Reconstruction step: We suppose that we know an approximated solution constant
in each cell at time step tκ as in Equation (4). This approximated solution is then
reconstructed as a piecewise bilinear polinomial as defined in Equations (5) and (6).
Evolution step: Let D represents one of the nine regions defined above Rj±1/2,k±1/2,
Rj,k±1/2, Rj±1/2,k, the central region Rj,k or the black rectangle BR. We will denote by
D+ the part of region D inside the non-staggered cell Ij,k and by D−, the part of region
D outside the cell Ij,k.

We integrate the conservation law (2) in the control volumes D×[tκm, t
κ
m+∆tc] to obtain

an approximate averaged solution w̄κ+1(D) at the next time step, in each cell D of the
staggered non-uniform grid.
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V

j−1/2 x j+1/2x j−1 x j x j+1

y k+1/2

y k

y k+1

y
k−1

y k−1/2

I VII

IXIII

IV

VI

VIIIII

x

Figure 5. SD2-2D: The two dimensional semi-discrete central scheme
SD2-2D: construction of the non-uniform staggered grid.

Projection step: These averaged solutions wκ+1(D) are then reconstructed as piece-
wise bilinear polynomials w̃κ+1(x, y) in each of the ten regions D. These new reconstruc-
tions are then projected back onto the original grid of uniform non-staggered cells,

S
κ+1

j,k :=
1

∆x∆y

∫
S
D

w̃κ+1(x, y) dx dy. (9)

The new reconstructions w̃κ+1(x, y) are defined analogously as in Equation (5). For
instance, for Region Rj+1/2,k,

w̃κ+1
j+1/2,k(x, y) = wκ+1

j+1/2,k + (wx)
κ+1
j+1/2,k(x− xj+1/2)+(wy)

κ+1
j+1/2,k(y − yk), (10)

(x, y) ∈ Rj+1/2,k.

The numerical derivatives (wx)
κ+1
j+1/2,k and (wy)

κ+1
j+1/2,k satisfy the conditions

(wx)
κ+1
j+1/2,k =

∂w

∂x

∣∣∣∣
(xj+1/2,yk,t

κ+1)

+O(∆x); (11)

(wy)
κ+1
j+1/2,k =

∂w

∂y

∣∣∣∣
(xj+1/2,yk,t

κ+1)

+O(∆y); (12)

in order to guarantee the second order approximation. Also, the reconstruction w̃κ+1
j+1/2,k(x, y)

retains the conservation property (8). We remark that this is a theoretical step and it
will not be necessary to compute these numerical derivatives in the final semi-discrete
formulation.
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This completes the construction of our totally discrete central scheme in a rectangular
grid. It is very laborious to write a totally discrete version of this central scheme. Instead,
we will proceed directly to our semi-discrete formulation. In order to to this, we compute
the following limit when ∆tc → 0,

lim
∆tc→0

Sj,k(t+ ∆tc)− Sj,k(t)
∆tc

=
d

dt
Sj,k(t) =

= lim
∆tc→0

1

∆tc
· 1

∆x∆y

 ∑
p=j±1/2

∫
R+
p,k+1/2

w̃κ+1
p,k+1/2(x, y)

+
∑

p=j±1/2

∫
R+
p,k−1/2

w̃κ+1
p,k−1/2(x, y) +

∑
p=j±1/2

∫
R+
p,k

w̃κ+1
p,k (x, y) dx dy

+
∑

q=k±1/2

∫
R+
j,q̃

wκ+1
j,q (x, y) dx dy +

∫
Rj,k

w̃κ+1
j,k (x, y) dx dy

+

∫
RP

w̃κ+1
j+1/2,k−1/2(x, y)dxdy − (∆x∆y)Sj,k(t)

}
(13)

The conservation property of the reconstructions w̃κ+1
j,k in he regions D results∫

D

w̃κ+1(x, y) dx dy = |D| · wκ+1(D), (14)

where wκ+1(D) is the averaged solution in region D. Note that, by reconstruction, the
area of regions I, III, VII and IX are proportional to (∆tc)

2, that is,

Region I: |Rj−1/2,k−1/2| = O
(
(∆tc)

2
)

Region III: |Rj−1/2,k+1/2| = O
(
(∆tc)

2
)

Region VII: |Rj+1/2,k−1/2| = O
(
(∆tc)

2
)

Region IX: |Rj+1/2,k+1/2| = O
(
(∆tc)

2
)

Region RP: |RP | = O
(
(∆tc)

2
)

For example, considering Region IX, we conclude∫
Rj+1/2,k+1/2̃

wκ+1
j+1/2,k+1/2(x, y) dx dy = O(∆tc)

2

⇒ lim
∆tc→0

1

∆tc

∫
Rj+1/2,k+1/2̃

wκ+1
j+1/2,k+1/2(x, y) dx dy = 0; (15)

Our goal is to obtain the semi-discrete formulation of this new central cheme. Therefore,
the Equation (15) show that we do not need to computed the averaged soltions over the
Regions I, III, VII and IX. Note that, by simetry, we only need to compute the solutions
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over the Regions VI, VIII, V and the Black Rectangle. For the Region Rj+1/2,k, we obtain:

∫
R+
j+1/2,k

w̃κ+1
j+1/2,k(x, y)dxdy =

=

∫
R+
j+1/2,k

[(
wκ+1
j+1/2,k + (wx)

κ+1
j+1/2,k · (x− xj+1/2) + (wy)

κ+1
j+1/2,k · (y − yk)

)]
dxdy

= wκ+1
j+1/2,k · |R

+
j+1/2,k|+O((∆tc)

2). (16)

Analogously, we compute the averaged solution over Region R+
j,k+1/2:

∫
R+
j,k+1/2̃

wκ+1
j,k+1/2(x, y)dxdy = wκ+1

j,k+1/2 · |R
+
j,k+1/2|+O((∆tc)

2). (17)

Note that the solution has no discontinuities inside Rj,k. So, it isn’t necessary to recon-
struction as a piecewise bilinear polynomials. The averaged solution is

∫
Rj,k

w̃κ+1
j,k (x, y)dxdy = wκ+1

j,k · |Rj,k|. (18)

Substituting the Equations (15), (16), (17) and (18) in Equation (13), we obtain:

d

dt
Sj,k(t) = lim

∆tc→0

{
cxj−1/2,k

∆x
wj−1/2,k(t+ ∆tc) +

cxj+1/2,k

∆x
wj+1/2,k(t+ ∆tc)

+
dyj,k−1/2

∆y
wj,k−1/2(t+ ∆tc) +

dyj,k+1/2

∆Y
wj,k+1/2(t+ ∆tc)

−

(
dyj,k+1/2 + dyj,k−1/2

∆y
+
cxj+1/2,k + cxj−1/2,k

∆x

)
· wj,k(t+ ∆tc)

+

(
1

∆tc
wj,k(t+ ∆tc)−

1

∆tc
Sj,k(t+ ∆tc)

)}
. (19)

For the final formulation, we have to compute the averaged solution over the non-
uniform staggered grid.

wκ+1
j+1/2,k, w

κ+1
j,k+1/2 e wκ+1

j,k ,

To this end, we integrate the conservation law (??) over the control volumes

Rj+1/2,k × [tκm, t
κ
m + ∆tc], Rj,k+1/2 × [tκm, t

κ
m + ∆tc] e Rj,k × [tκm, t

κ
m + ∆tc],
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respectively. Therefore,

wκ+1
j+1/2,k =

1

|Rj+1/2,k|

∫
Rj+1/2,k

s(x, y, tκ+1) dx dy

=
1

|Rj+1/2,k|

∫
Rj+1/2,k

S̃κ(x, y) dx dy

− 1

|Rj+1/2,k|

∫
Rj+1/2,k

∫ tκ+1

tκ

[
∂

∂x

(
xv(x, y, τ) · f(s(x, y, τ))

)
(20)

+
∂

∂y

(
yv(x, y, τ) · f(s(x, y, τ))

)]
dx dydτ.

Let us denote the double integral by InteS and the flux integral by Intf . The integral InteS
is computed analytically.

InteS =
1

2
(S

κ

j,k + S
κ

j+1,k)

+
1

4

[
∆x− cxj+1/2,k∆tc

]
·
[
(Sx)

κ
j,k − (Sx)

κ
j+1,k

]
(21)

+
∆tc
4

[
byj+1/2,k−1/2 − b

y
j+1/2,k+1/2

]
·
[
(Sy)

κ
j,k − (Sy)

κ
j+1,k

]
.

To compute the flux integral, Intf , we first denote the limits of region Rj+1/2,k as follows:

a := xj+1/2 − cxj+1/2,k∆tc

b := xj+1/2 + cxj+1/2,k∆tc

c := yk+1/2 + byj+1/2,k−1/2∆tc

d := yk+1/2 − byj+1/2,k+1/2∆tc

Using the Calculus Fundamental Theorem together with the trapezoid rule, we obtain

Intf =
1

2∆xj+1/2,k

∫ tκ+1

tκ

[
xv(b, d, τ) f(s(b, d, τ))− xv(a, d, τ) f(s(a, d, τ))

+xv(b, c, τ) f(s(b, c, τ))− xv(a, c, τ) f(s(a, c, τ))
]
dτ

+
1

2∆yj+1/2,k

∫ tκ+1

tκ

[
yv(b, d, τ) f(s(b, d, τ))− yv(b, c, τ) f(s(b, c, τ))

+yv(a, d, τ) f(s(a, d, τ))− yv(a, c, τ) f(s(a, c, τ))
]
dτ (22)

If the CFL condition

max

(
∆tc
∆x

max
S
|xv f ′(s)|, ∆tc

∆y
max
S
|yv f ′(s)|

)
<

1

2
(23)

holds and since the functions xv f(s(x, y, τ)) and yv f(s(x, y, τ)) are computed away from
the discontinuities then they are differential functions of τ and therefore, the time integral
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can be approximated using the middle point rule. Denoting tκ+1/2 := t+∆tc/2, we obtain:

Intf =
1

4cxj+1/2,k

[
xv(b, d, tκ+1/2) f(S(b, d, tκ+1/2))− xv(a, d, tκ+1/2) f(S(a, d, tκ+1/2))

+xv(b, c, tκ+1/2) f(S(b, c, tκ+1/2))− xv(a, c, tκ+1/2) f(S(a, c, tκ+1/2))
]
dτ

+
αY

2− 2αY (byj+1/2,k+1/2 − b
y
j+1/2,k−1/2)

·[
yv(b, d, tκ+1/2) f(S(b, d, tκ+1/2))− yv(b, c, tκ+1/2) f(S(b, c, tκ+1/2))

+yv(a, d, tκ+1/2) f(S(a, d, tκ+1/2))− yv(a, c, tκ+1/2) f(S(a, c, tκ+1/2))
]
dτ (24)

where αX = ∆tc/∆X and αY = ∆tc/∆Y .
The midpoint values are computed using the Taylor expansions and the conservation

law (2). For instance,

S(a, d, tκ+1/2) := S(a, d, t)

−∆tc
2

(
xv(a, d, t) f(S(a, d, t))

)
x
−∆tc

2

(
yv(a, d, t) f(S(a, d, t))

)
y

S(a, d, t) := S
κ

j+1,k −∆x (Sx)
κ
j+1,k

(1

2
− αXcxj+1/2,k

)
−∆y (Sy)

κ
j+1,k

(1

2
− αY byj+1/2,k+1/2

)
.

As the time step ∆tc goes to zero, the limit

lim
∆tc→0

S(a, d, tκ+1/2) = S
κ

j+1,k −
∆X

2
(Sx)

κ
j+1,k −

∆Y

2
(Sy)

κ
j+1,k := S++

j+1/2,k−1/2. (25)

These are called the intermediate values and their general form is

S±±j+1/2,k+1/2 = S
κ

j+1/2±1/2,k+1/2±1/2 ±
∆X

2
(Sx)

κ
j+1/2±1/2,k+1/2±1/2(xj+1/2 − xj+1/2±1/2)

±∆Y

2
(Sy)

κ
j+1/2±1/2,k+1/2±1/2(yk+1/2 − yk+1/2±1/2) (26)

We notice that the cell averages wκ+1
j,k+1/2 and wκ+1

j,k are obtained analogously to (20).

And also, wκ+1
j−1/2,k = wκ+1

j+1/2−1,k e wκ+1
j,k−1/2 = wκ+1

j,k+1/2−1.

Substituting all these cell averages in time step tκm + ∆tc into Equation (19) and com-
puting the limit when ∆tc→0, we obtain the second order central scheme in semi-discrete
formulation:

d

dt
Sjk(t) = −

Hx
j+1/2,k(t)−Hx

j−1/2,k(t)

∆X
−
Hy
j,k+1/2(t)−Hy

j,k−1/2(t)

∆Y
, (27)
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where the numerical fluxes are

Hx
j+1/2,k(t) =

1

4

{
xvj+1/2,k+1/2(t)

[
f(S+−

j+1/2,k+1/2(t)) + f(S−−j+1/2,k+1/2(t))
]

+ xvj+1/2,k−1/2(t)
[
f(S++

j+1/2,k−1/2(t)) + f(S−+
j+1/2,k−1/2(t))

]}
−
cxj+1/2,k

2

[
S+
j+1/2,k(t)− S

−
j+1/2,k(t)

]
; (28a)

Hy
j,k+1/2(t) =

1

4

{
yvj+1/2,k+1/2(t)

[
f(S−+

j+1/2,k+1/2(t)) + f(S−−j+1/2,k+1/2(t))
]

+ yvj−1/2,k+1/2(t)
[
f(S++

j−1/2,k+1/2(t)) + f(S+−
j−1/2,k+1/2(t))

]}
−
dyj,k+1/2

2

[
S+
j,k+1/2(t)− S−j,k+1/2(t)

]
. (28b)

If the numerical derivatives are equal to zero then we obtain the two-dimensional Ru-
sanov’s central scheme in semi-discrete formulation.

Rusaxj+1/2,k(t) =
1

4

{
xvj+1/2,k+1/2(t)

[
f(Sj+1,k(t)) + f(Sj,k(t))

]
+ xvj+1/2,k−1/2(t)

[
f(Sj+1,k(t)) + f(Sj,k(t))

]}
−
cxj+1/2,k

2

[
Sj+1,k(t)− Sj,k(t)

]
; (29a)

Rusayj,k+1/2(t) =
1

4

{
yvj+1/2,k+1/2(t)

[
f(Sj,k+1(t)) + f(Sj,k(t))

]
+ yvj−1/2,k+1/2(t)

[
f(Sj,k+1(t)) + f(Sj,k(t))

]}
−
dyj,k+1/2

2

[
Sj,k+1(t)− Sj,k(t)

]
. (29b)

This new two-dimensional semi-discrete central scheme with the numerical fluxes given
by (28) or (29) comprises a system of ordinary differential equations. To solve this system,
we use the explicit second order Runge-Kutta method.

2.5. The velocity field. Finally, to complete the description of the genuinely two-
dimensional KT scheme, we have to define the velocity field. The velocity is defined
at the vertices of the cells. We can not use directly the velocity field from the Raviart-
Thomas space as we did in the dimension by dimension approach. Instead we will use a
bilinear interpolation of it preserving the null divergence necessary for the incompressible
flows. For instance, to compute the value of xvj+1/2,k+1/2 on the vertex (xj+1/2, yk+1/2) at
some time step tm, we have to use all the four cells which share this vertex,
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xvj+1/2,k+1/2 =
1

2

(
xvj,k+1/2 + xvj+1,k+1/2

)
=

1

2

[1

2

(
xvj,k + xvj,k+1

)
+

1

2

(
xvj+1,k + xvj+1,k+1

)]
= +

1

2

[1

2

(1

2
(~vrj+1/2,k − ~vlj−1/2,k)

+
1

2
(~vrj+1/2,k+1 − ~vlj−1/2,k+1

)
+

1

2

(1

2
(~vrj+3/2,k − ~vlj+1/2,k) +

1

2
(~vrj+3/2,k+1 − ~vlj+1/2,k+1)

)
=

1

8

(
~vrj+1/2,k − ~vlj−1/2,k + ~vrj+1/2,k+1 − ~vlj−1/2,k+1

+~vrj+3/2,k − ~vlj+1/2,k + ~vrj+3/2,k+1 − ~vlj+1/2,k+1

)
3. TWO-DIMENSIONAL NUMERICAL EXPERIMENTS

We present and compare the results for numerical simulations of two-dimensional, two-
phase flow associated with two distinct flooding problems using the KT scheme with the
dimension by dimension approach (KT dxd) and the genuinely two-dimensional formu-
lation (SD2-2D). The first problem is a two-dimensional flow in a rectangular heteroge-
neous reservoir (called slab geometry) with 256 m × 64 m in size, and the second is a
two-dimensional flow in a 5-spot geometry homogeneous reservoir having 64 m × 64 m.

In the 5-spot geometry homogeneous reservoir simulation we used two distinct uniform
five-spot well configurations intended to illustrate different flow patterns, with parallel
and diagonal grid orientations, and boundary behavior.

In all simulations the reservoir contains initially 79% of oil and 21% of water. Water is
injected at a constant rate of 0.2 pore volumes every year.

The fractional volumetric flow, the total mobility, and the relative permeabilities are
assumed to be:

f(s) =
krw(s)/µw
λ(s)

, λ(s) =
krw(s)

µw
+
kro(s)

µo
,

and

kro(s) = (1− (1− sro)−1s)2, krw(s) = (1− srw)−2(s− srw)2,

where sro = 0.15 and srw = 0.2 are the residual oil and water saturations, respectively.
The viscosity of oil and water used in all simulations are µo = 10.0 cP and µo = 0.05 cP .

For the heterogeneous reservoir studies we consider a scalar absolute permeability field
K(x) taken to be log-normal (a fractal field, see (Glimm et al., 1993) and (Furtado
and Pereira, 2003) for more details) with moderately large heterogeneity strength. The
spatially variable permeability field is defined on a 256 × 64 grid with three different
values of the coefficient of variation Cv (standard deviation)/mean: 0.5, 1.0, and 2.4.

The boundary conditions, injection and production specifications for two-phase flow
equations (1)-(2)) are as follows. For the horizontal slab geometry, injection is made
uniformly along the left edge of the reservoir and the (total) production rate is taken to
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be uniform along the right edge; no flow is allowed along the edges appearing at the top
and bottom of the reservoir in the graphics (Figures 6, 7, and 8).

In the case of a five-spot flood with diagonal grid (Figure 9), injection takes place
at one corner and production at the diametrically opposite corner; no flow is allowed
across the entirety of the boundary. In the case of a five-spot flood with the parallel grid,
injection takes place at two corners (diametrically opposite), say left down and right up,
and production in the diametrically ’off corners’, say right down and left up.
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Figure 6. Water saturation surface plots for two-phase flow in a two-
dimensional heterogeneous reservoir having 256 m × 64 m, with the coef-
ficient of variation Cv = 0.5 and viscous ratio 20. From top to bottom:1)
(KT dxd) scheme with 256× 64 grid; 2) (KT dxd) scheme with 512× 128
grid; 3) (KT two) scheme with 256× 64 grid.
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Figure 7. Water saturation surface plots for two-phase flow in a two-
dimensional heterogeneous reservoir having 256 m × 64 m, with the coef-
ficient of variation CV = 1.2 and viscous ratio 20. From top to bottom:1)
(KT dxd) scheme with 256× 64 grid; 2) (KT dxd) scheme with 512× 128
grid; 3) (KT two) scheme with 256× 64 grid.
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Figure 8. Water saturation surface plots for two-phase flow in a two-
dimensional heterogeneous reservoir having 256 m × 64 m, with the coef-
ficient of variation CV = 2.2 and viscous ratio 20. From top to bottom:1)
(KT dxd) scheme with 256× 64 grid; 2) (KT dxd) scheme with 512× 128
grid; 3) (KT two) scheme with 256× 64 grid.
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(a) NT2D: 64×64 clulas
0 16 32 48 64
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32

48
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(b) KTdxd: 64×64 clulas

(c) NT2D: 128×128 clulas
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48

64

(d) KTdxd: 128×128 clulas

Figure 9. Water saturation level curves for two-phase flow in a five-spot
well configuration. The SD2-2D scheme was used in pictures in the left
column and the KTdxd was used in pictures in the right column.
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3.1. Analyzing the Numerical Results. Conclusions. The Figures 6, 7 and 8 refer to
a comparative study for the KT dimension by dimension and a genuinely two-dimensional
KT schemes showing the water saturation surface plots after 350 days of simulation for
three different values for the strength of the heterogeneity of the fractal permeability field,
CV = 0.5, 1.2 and 2.2.

Note that the genuinely two-dimensional KT scheme gives a more accurate solution
than the solutions computed by the KT dimension by dimension scheme for the same grid.
In fact we observe that the KT dxd is only comparable in accuracy with one degree of
refinement (see Figures 6, 7 and 8). The better accuracy of the genuinely two-dimensional
approach is due to a more precise computation of the genuinely two-dimensional numerical
fluxes, with respect to the one dimensional numerical fluxes in the dimension by dimension
approach.

In the case of a five-spot geometry homogeneous reservoir, Figure 9 (diagonal grid)
shows the saturation level curves after 260 days of simulation obtained with KTdxd and
SD2-2D schemes for two levels of spatial discretization. In this figure 9, the pictures on
the left column are the results obtained with the SD2-2D scheme and the ones on the
right were computed with the KTdxd scheme. In these Figures, the grid become finer
from top to bottom, having 64 × 64 and 128 × 128 cells, respectively.

It is clear that the KTdxd scheme (right column pictures in Figures 9 is producing
incorrect boundary behavior. Moreover as the computational grid is refined (right column
and bottom picture in Figure 9) this problem seems to be emphasized indicating that the
solution is not convergent.

The KTdxd scheme uses numerical fluxes in the x and y directions which can be viewed
as generalizations of one-dimensional numerical fluxes. We state that this type of approx-
imation for the fluxes leads to the incorrect boundary behavior discussed above. This in-
correct boundary behavior led us to develop a new genuinely two-dimensional KT scheme.
The results obtained with this new scheme can be seen in the left column of Figure 9. It
is clear that we have corrected the boundary behavior just changing the approach from
dimension by dimension to our two-dimensional approach. This fact indicates (but does
not prove) our idea that computing two-dimensional numerical fluxes using straight gener-
alizations of one-dimensional numerical fluxes may produce incorrect numerical solutions.
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